293 research outputs found

    Model atmospheres of X-ray bursting neutron stars

    Full text link
    We present an extended set of model atmospheres and emergent spectra of X-ray bursting neutron stars in low mass X-ray binaries. Compton scattering is taken into account. The models were computed in LTE approximation for six different chemical compositions: pure hydrogen and pure helium atmospheres, and atmospheres with a solar mix of hydrogen and helium and various heavy elements abundances: Z = 1, 0.3, 0.1, and 0.01 Z_sun, for three values of gravity, log g =14.0, 14.3, and 14.6 and for 20 values of relative luminosity l = L/L_Edd in the range 0.001 - 0.98. The emergent spectra of all models are fitted by diluted blackbody spectra in the observed RXTE/PCA band 3 - 20 keV and the corresponding values of color correction factors f_c are presented. We also show how to use these dependencies to estimate the neutron star's basic parameters.Comment: 2 pages, 1 figure, conference "Astrophysics of Neutron Stars - 2010" in honor of M. Ali Alpar, Izmir, Turke

    Modeling the EUV spectra of optically thick boundary layers of dwarf novae in outburst

    Full text link
    Here we compute detailed model spectra of recently published optically thick one-dimensional radial baundary layer (BL) models in cataclysmic variables and compare them with observed soft X-ray/extreme ultraviolet (EUV) spectra of dwarf novae in outburst. Every considered BL model is divided into a number of rings, and for each ring, a structure model along the vertical direction is computed using the stellar-atmosphere method. The ring spectra are then combined into a BL spectrum taking Doppler broadening and limb darkening into account. Two sets of model BL spectra are computed, the first of them consists of BL models with fixed white dwarf (WD) mass (1 M_sun) and various relative WD angular velocities (0.2, 0.4, 0.6 and 0.8 break-up velocities), while the other deals with a fixed relative angular velocity (0.8 break-up velocity) and various WD masses (0.8, 1, and 1.2 M_sun). The model spectra show broad absorption features because of blending of numerous absorption lines, and emission-like features at spectral regions with only a few strong absorption lines. The model spectra are very similar to observed soft X-ray/EUV spectra of SS Cyg and U Gem in outburst. The observed SS Cyg spectrum could be fitted by BL model spectra with WD masses 0.8 - 1 M_sun and relative angular velocities 0.6 - 0.8 break up velocities. These BL models also reproduce the observed ratio of BL luminosity and disk luminosity. The difference between the observed and the BL model spectra is similar to a hot optically thin plasma spectrum and could be associated with the spectrum of outflowing plasma with a mass loss rate compatible with the BL mass accretion rate. The suggested method of computing BL spectra seems very promising and can be applied to other BL models for comparison with EUV spectra of dwarf novae in outburst.Comment: Accepted for publication in A&A, 14 pages, 13 figures, 4 table

    On the compactness of the isolated neutron star RX J0720.4-3125

    Full text link
    The data from all observations of RX J0720.4-3125 conducted by XMM-Newton EPIC-pn with the same instrumental setup in 2000-2012 were reprocessed to form a homogenous data set of solar barycenter corrected photon arrival times registered from RX J0720.4-3125. A Bayesian method for the search, detection, and estimation of the parameters of an unknown-shaped periodic signal was employed as developed by Gregory & Loredo (1992). A number of complex models (single and double peaked) of light curves from pulsating neutron stars were statistically analyzed. The distribution of phases for the registered photons was calculated by folding the arrival times with the derived spin-period and the resulting distribution of phases approximated with a mixed von Mises distribution, and its parameters were estimated by using the Expected Maximization method. Spin phase-resolved spectra were extracted, and a number of highly magnetized atmosphere models of an INS were used to fit simultaneously, the results were verified via an MCMC approach. The phase-folded light curves in different energy bands with high S/N ratio show a high complexity and variations depending on time and energy. They can be parameterized with a mixed von Mises distribution, i.e. with double-peaked light curve profile showing a dependence of the estimated parameters (mean directions, concentrations, and proportion) upon the energy band, indicating that radiation emerges from at least two emitting areas. The genuine spin-period of the isolated neutron star RX J0720-3125 derived as more likely is twice of that reported in the literature (16.78s instead of 8.39s). The gravitational redshift of RX J0720.4-3125 was determined to z=0.205−0.003+0.006z=0.205_{-0.003}^{+0.006} and the compactness was estimated to (M/MSun)/R(km)=0.105±0.002(M/M_{Sun})/R(km)=0.105 \pm 0.002 .Comment: Comments: 19 pages, 15 figures and 5 tables, Astronomy and Astrophysics accepted. arXiv admin note: text overlap with arXiv:1108.389

    Absorption Features in Spectra of Magnetized Neutron Stars

    Full text link
    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50 - 200 eV, whose nature is not yet well known. To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B ~ 10^{14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS\,1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely. We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B ~ 10^{10} - 10^{11} G (i.e., electron cyclotron energy E_{c,e} ~ 0.1 - 1 keV) and T_eff = 1 - 3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs \approx 100 - 200 eV can arise due to these quantum oscillations.Comment: 4 pages, 3 figures, conference "Astrophysics of Neutron Stars - 2010" in honor of M. Ali Alpar, Izmir, Turke

    Vertical Structure of the Outer Accretion Disk in Persistent Low-Mass X-Ray Binaries

    Get PDF
    We have investigated the influence of X-ray irradiation on the vertical structure of the outer accretion disk in low-mass X-ray binaries by performing a self-consistent calculation of the vertical structure and X-ray radiation transfer in the disk. Penetrating deep into the disk, the field of scattered X-ray photons with energy E≳10E\gtrsim10\,keV exerts a significant influence on the vertical structure of the accretion disk at a distance R≳1010R\gtrsim10^{10}\,cm from the neutron star. At a distance R∼1011R\sim10^{11}\,cm, where the total surface density in the disk reaches Σ0∼20\Sigma_0\sim20\,g\,cm−2^{-2}, X-ray heating affects all layers of an optically thick disk. The X-ray heating effect is enhanced significantly in the presence of an extended atmospheric layer with a temperature Tatm∼(2÷3)×106T_{atm}\sim(2\div3)\times10^6\,K above the accretion disk. We have derived simple analytic formulas for the disk heating by scattered X-ray photons using an approximate solution of the transfer equation by the Sobolev method. This approximation has a ≳10\gtrsim10\,% accuracy in the range of X-ray photon energies E<20E<20\,keV.Comment: 19 pages, 8 figures, published in Astronomy Letter

    Influence of Compton scattering on the broad-band X-ray spectra of intermediate polars

    Get PDF
    Context. The majority of cataclysmic variables observed in the hard X-ray energy band are intermediate polars where the magnetic field is strong enough to channel the accreting matter to the magnetic poles of the white dwarf. A shock above the stellar surface heats the gas to fairly high temperatures (10-100 keV). The post-shock region cools mostly via optically thin bremsstrahlung.Aims. We investigate the influence of Compton scattering on the structure and the emergent spectrum of the post-shock region. We also study the effect it has on the mass of the white dwarfs obtained from fitting the observed X-ray spectrum of intermediate polars. Methods. We construct the model of the post-shock region taking Compton scattering into account. The radiation transfer equation is solved in the plane-parallel approximation. The feedback of Compton scattering on the structure of the post-shock region is also accounted for. A set of the post-shock region model spectra for various white dwarf masses is calculated.Results. We find that Compton scattering does not change the emergent spectra significantly for low accretion rates or low white dwarf masses. However, it becomes important at high accretion rates and high white dwarf masses. The time-averaged, broad-band X-ray spectrum of intermediate polar V709 Cas obtained by the RXTE and and INTEGRAL observatories is fitted using the set of computed spectral models. We obtained the white dwarf mass of 0.90 ± 0.02 M⊙ and 0.88 ± 0.02 M⊙ using models with Compton scattering taken into account and without it, respectively. © 2008 ESO
    • …
    corecore